A multi-time-scale analysis of chemical reaction networks: II. Stochastic systems.

نویسندگان

  • Xingye Kan
  • Chang Hyeong Lee
  • Hans G Othmer
چکیده

We consider stochastic descriptions of chemical reaction networks in which there are both fast and slow reactions, and for which the time scales are widely separated. We develop a computational algorithm that produces the generator of the full chemical master equation for arbitrary systems, and show how to obtain a reduced equation that governs the evolution on the slow time scale. This is done by applying a state space decomposition to the full equation that leads to the reduced dynamics in terms of certain projections and the invariant distributions of the fast system. The rates or propensities of the reduced system are shown to be the rates of the slow reactions conditioned on the expectations of fast steps. We also show that the generator of the reduced system is a Markov generator, and we present an efficient stochastic simulation algorithm for the slow time scale dynamics. We illustrate the numerical accuracy of the approximation by simulating several examples. Graph-theoretic techniques are used throughout to describe the structure of the reaction network and the state-space transitions accessible under the dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and Control of MIMO Systems with State Time Delay (Short Communication)

Time-delay identification is one of the most important parameters in designing controllers. In the cases where the number of inputs and outputs in a system are more than one, this identification is of great concern. In this paper, a novel autocorrelation-based scheme for the state variable time-delay identification for multi-input multi-output (MIMO) system has been presented. This method is ba...

متن کامل

Weak error analysis of tau-leaping methods for multi-scale stochastic chemical kinetic systems

A chemical reaction network is a chemical system involving multiple reactions and chemical species. The simplest stochastic models of such networks treat the system as a continuous time Markov chain with the state being the number of molecules of each species and with reactions modeled as possible transitions of the chain. For such models, there is typically a wide variation in temporal and oth...

متن کامل

Numerical simulation of well stirred biochemical reaction networks governed by the master equation

Numerical simulation of stochastic biochemical reaction networks has received much attention in the growing field of computational systems biology. Systems are frequently modeled as a continuous–time discrete space Markov chain, and the governing equation for the probability density of the system is the (chemical) master equation. The direct numerical solution of this equation suffers from an e...

متن کامل

Two-Stage Stochastic Day-Ahead Market Clearing in Gas and Power Networks Integrated with Wind Energy

The significant penetration rate of wind turbines in power systems made some challenges in the operation of the systems such as large-scale power fluctuations induced by wind farms. Gas-fired plants with fast starting ability and high ramping can better handle natural uncertainties of wind power compared to other traditional plants. Therefore, the integration of electrical and natural gas syste...

متن کامل

Constrained consumable resource allocation in alternative stochastic networks via multi-objective decision making

Many real projects complete through the realization of one and only one path of various possible network paths. Here, these networks are called alternative stochastic networks (ASNs). It is supposed that the nodes of considered network are probabilistic with exclusive-or receiver and exclusive-or emitter. First, an analytical approach is proposed to simplify the structure of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of mathematical biology

دوره 73 5  شماره 

صفحات  -

تاریخ انتشار 2016